

MATHEMATICS STANDARD LEVEL PAPER 2

Thursday 6 May 2010 (morning)

1 hour 30 minutes

	C	andi	date	sessi	on n	umb	er	
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number on each answer sheet, and attach them to this examination paper and your cover sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [*Maximum mark: 7*]

The following table gives the examination grades for 120 students.

Grade	Number of students	Cumulative frequency
1	9	9
2	25	34
3	35	p
4	q	109
5	11	120

(a)	Find the value of	
	(i) <i>p</i> ;	
	(ii) q.	[4 marks]
(b)	Find the mean grade.	[2 marks]
(c)	Write down the standard deviation.	[1 mark]
		-
		-
		-
		•

[Ma	ximun	n mark: 6]	
An a	ırithm	etic sequence, u_1 , u_2 , u_3 , has $d = 11$ and $u_{27} = 263$.	
(a)	Find	u_1 .	[2 marks]
(b)	(i)	Given that $u_n = 516$, find the value of n .	
	(ii)	For this value of n , find S_n .	[4 marks]
• • •			
	An a	An arithm (a) Find (b) (i)	(b) (i) Given that $u_n = 516$, find the value of n .

.....

3.	[Ma	ximum mark: 5]	
		plays a game where she tosses two fair six-sided dice. She wins a prize if the of her scores is 5.	
	(a)	Jan tosses the two dice once. Find the probability that she wins a prize.	[3 marks]
	(b)	Jan tosses the two dice 8 times. Find the probability that she wins 3 prizes.	[2 marks]

[Maximum mark: 6] 4.

Find the term in x^4	in the expansion of	$\left(3x^2-\frac{2}{x}\right)$	5.
		\mathcal{X}	,

٠.	٠	 	٠	 ٠	 	•	 •	 •	 •	٠	 ٠	•	 ٠	٠	 	•	 •	•	 ٠	 •	 •	 	 •	 ٠	•	 ٠	•	 ٠	•
		 			 										 							 					-		

5. [Maximum mark: 7]

Consider $f(x) = 2 - x^2$, for $-2 \le x \le 2$ and $g(x) = \sin e^x$, for $-2 \le x \le 2$. The graph of f is given below.

-6-

(a) On the diagram above, sketch the graph of g.

[3 marks]

(b) Solve f(x) = g(x).

[2 marks]

(c) Write down the set of values of x such that f(x) > g(x).

[2 marks]

6. [Maximum mark: 6]

Let $f(x) = e^x \sin 2x + 10$, for $0 \le x \le 4$. Part of the graph of f is given below.

There is an x-intercept at the point A, a local maximum point at M, where x = p and a local minimum point at N, where x = q.

(a) Write down the x-coordinate of A.

[1 mark]

- (b) Find the value of
 - (i) p;

/···	
(11)	α

[2 marks]

(c)	Find	$\int_{p}^{q} f(x) dx$	Explain wh	ny this is	not the are	ea of the s	shaded region.
-----	------	------------------------	------------	------------	-------------	-------------	----------------

[3 marks]

							 					 	 				•														•
							 					 	 																		•
							 				-	 	 																		
							 				-	 	 																		
							 				-	 	 																		•
							 				-	 	 																		•

7.	[Ma	ximum mark: 8]	
	The	number of bacteria, n , in a dish, after t minutes is given by $n = 800e^{0.13t}$.	
	(a)	Find the value of n when $t = 0$.	[2 marks]
	(b)	Find the rate at which n is increasing when $t = 15$.	[2 marks]
	(c)	After k minutes, the rate of increase in n is greater than 10 000 bacteria per minute. Find the least value of k , where $k \in \mathbb{Z}$.	[4 marks]

Do NOT write on this page.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 15]

The diagram below shows a circle with centre O and radius 8 cm.

The points A, B, C, D, E and F are on the circle, and [AF] is a diameter. The length of arc ABC is 6 cm.

(a) Find the size of angle AOC. [2 marks]

(b) Hence find the area of the shaded region. [6 marks]

The area of sector OCDE is 45 cm².

(c) Find the size of angle COE. [2 marks]

(d) Find EF. [5 marks]

9. [Maximum mark: 16]

In this question, distance is in metres.

Toy airplanes fly in a straight line at a constant speed. Airplane 1 passes through a point A.

-10-

Its position, p seconds after it has passed through A, is given by $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix} + p \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$.

- (a) (i) Write down the coordinates of A.
 - (ii) Find the speed of the airplane in ms⁻¹.

[4 marks]

- (b) After seven seconds the airplane passes through a point B.
 - (i) Find the coordinates of B.
 - (ii) Find the distance the airplane has travelled during the seven seconds.

[5 marks]

(c) Airplane 2 passes through a point C. Its position q seconds after it passes

through C is given by
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \\ 8 \end{pmatrix} + q \begin{pmatrix} -1 \\ 2 \\ a \end{pmatrix}, a \in \mathbb{R}$$
.

The angle between the flight paths of Airplane 1 and Airplane 2 is 40° . Find the two values of a.

[7 marks]

10. [Maximum mark: 14]

Consider $f(x) = x \ln(4-x^2)$, for -2 < x < 2. The graph of f is given below.

-11-

- (a) Let P and Q be points on the curve of f where the tangent to the graph of f is parallel to the x-axis.
 - (i) Find the x-coordinate of P and of Q.
 - (ii) Consider f(x) = k. Write down all values of k for which there are exactly two solutions.

[5 marks]

Let $g(x) = x^3 \ln(4-x^2)$, for -2 < x < 2.

(b) Show that
$$g'(x) = \frac{-2x^4}{4-x^2} + 3x^2 \ln(4-x^2)$$
.

[4 marks]

(c) Sketch the graph of g'.

[2 marks]

(d) Consider g'(x) = w. Write down all values of w for which there are exactly two solutions.

[3 marks]